DSN Progress Report 42-41

July and August 1977

An MBASIC®™ User Profile

R. L. Schwartz
DSN Data Systems Section

An important aspect of any programming language development is an awareness of
how the language is actually being used. This article presents the preliminary results of an
empirical study of MBASIC user programs. The study, part of an ongoing effort, seeks to
discover the features and capabilities of the MBASIC processor which are being utilized,
This will aid in future decisions to be made concerning language extensions and the

development of a batch compiler.

I. Introduction

Designers of languages and compilers usually have com-
paratively little information about the way in which pro-
gramming languages are actually used by typical programmers.
Designers have some view of what programmers using the
language do, but this is rarely based on a representative sample
of the programs which are actually being written and used.

There has been widespread realization that more data about
language use is needed. The modification of programming
languages and compilers for programming languages should
take place with a clear picture of what elements of the lan-
guage are being used. Too often in the history of programming
language and compiler development, decisions have been based
on a feeling on the part of the language designers or compiler
writers of what features are most important. It is easy to fall in
the trap of assuming that complicated constructions are the
norm when in fact they are infrequently used. Such mistaken
assumptions can lead to misguided optimization efforts and
misinterpretation of user needs.

Empirical studies of user programs written in the pro-
gramming language FORTRAN by Knuth (Ref. 1) and in the
language ALGOL 60 by Wichmann (Ref. 2) have been previ-
ously made. The studies have analyzed user programs in vari-

ous ways. A static profile provided information about the
frequency of occurrence of various statements and constructs,
complexity of control flow, as well as other data which can be
gathered from a program listing. A dynamic profile gave infor-
mation related to frequency of execution of program
statements, and how the execution time was distributed
among the program statements. The overall conclusions of the
studies showed that the vast majority of the statements in
most programs are of a very simple nature, and that the bulk
of the program execution time is spent executing a very small
percentage of the program statements.

Such a profile of typical programs written in the MBASIC
computer programming language has been initiated at JPL.
The MBASIC language is an advanced version of BASIC
designed at the Laboratory in the early part of 1971. Presently
an MBASIC interpreter is implemented on the UNIVAC 1108
and DECsystem-10 computers. It has recently been recom-
mended as the standard nonreal-time language for use in Deep
Space Network program development. Intended to be a simple
easy-to-learn general-purpose programming language, it is used
extensively " throughout the Laboratory for management,
scientific, and light computing applications. References 3 and
4 give a general introduction to the features and capabilities of
the MBASIC system.

103

II. The Study Performed

A preliminary static profile of MBASIC user programs
analyzing a total of 114 programs stored in the MBASIC user
library has been made, with programs chosen randomly from
approximately 800 user program files. The statistics described
in the following sections attempt to analyze the use of differ-
ent statement types, modifiers, and the use of the backslash
statement regenerator. These statistics were compiled auto-
matically by a computer program written in the MBASIC
language. Direct analysis of selected programs was used to aid
in the interpretation of the results.

A. Overall Statement Usage

A top-level statement usage breakdown of the 14,908 state-
ments appearing in the 114 MBASIC user files is given in
Table 1. This statement breakdown does not include statements
embedded in an IFTHENELSE statement (e.g., the GOTO
statement embedded in IF B THEN GOTO 100). Statistics for
this were compiled separately, and are reported in the next
section. In the case where there are synonymous keywords
(ie., PRINT/WRITE, and STOP/END), the combined statistics
are reported with the individual statistics given in a footnote.
The assignment statement is somewhat of a special case: it
may be initiated by a LET keyword for one or more simple
assignments, by an EXCHANGE keyword for one or more
variable exchanges, or without a keyword for a combination of
assignments and exchanges. Each of these cases is shown
separately in Tables 1 to 5.

A special analysis was made for the GOTO and GOSUB
statements. The specification of the line number for the
branching operation can, in general, be an arbitrary expression
evaluating to a real number. A check was made to see how
often a simple constant line number was used rather than an
expression. This is also reported in Table 1.

B. IFTHENELSE Statement Usage

Tables 2 and 3 show the frequency of occurrence of the
different program statements in the THEN and ELSE clauses
of the IFTHENELSE statement, respectively. The preliminary
results presented herein only analyze one nesting level. Thus in
a statement such as

IFD
THEN
IF C
THEN A = 14
ELSE B =7
ELSE PRINT A

the assignments to the variables A and B would not be
recorded, The statement in the THEN-clause would be noted

104

as an IF statement, and the statement in the ELSE-clause
would be noted as a PRINT statement. Future empirical
studies may analyze arbitrary IFTHENELSE nesting levels.

C. Modifier Usage

Table 4 summarizes the results concerning the use of the
WHERE, IF, UNLESS, and FOR modifiers in program state-
ments. Again, only a preliminary analysis of the top-level
statements was performed (e.g., the WAIT statement in IF B
THEN WAIT UNLESS X is not analyzed for modifier usage).

D. Backslash Usage

Table 5 reports the results concerning the use of the back-
slash statement regenerator for each of the statement types.
Again, only the top-level statements have been analyzed.

Ill. Analysis of Results

Before analyzing the results given in Tables I to 5, the
reader should note that Table 1, giving the statement usage
breakdown, may tend to present a slightly misleading view of
the relative usage of statements in programs. One might regis-
ter surprise (or even joy) at the fact that the GOSUB state-
ment is used more frequently than the GOTO statement. While
this is indeed true at the top-level of statement nesting, the
table does not show the extremely heavy usage of GOTO
statements in IFTHENELSE statements. When the figures in
Table 1 are modified to include the second level statements in
the THEN and ELSE clauses of the IF statement, the results
then show: ASSIGN 28.3% (4975), IF 12.8% (2243), GOTO
12.6% (2213), PRINT/WRITE 12.5% (2193), and GOSUB
7.5% (1325). Thus, while the GOSUB is used more frequently
as an unconditional statement, the GOTO is used more overall.
This breakdown is in contrast to the results reported by Knuth
concerning FORTRAN programs written at Lockheed. He
found the following statements most heavily used: Assignment
41%, IF 14.5%, GOTO 13%, CALL 8%, and WRITE 4%. The
non-numeric applications for typical MBASIC programs would
seem to account for the higher frequency of output state-
ments. Generally, however, the frequency of usage of MBASIC
statements follows the usage of FORTRAN statements rather
closely.

The APPEND, PAUSE, REMOVE, DATA, WIDTH, READ,
RENAME, EXIT and RANDOMIZE statements were very
seldom used, while the EXCHANGE, TAPE, and REMARK
statements were never used in the samples studied. The rela-
tively high position for the LET statement (0.5%) was found
to be due to one program which was translated from the
BASIC language.

Table 2 shows that almost half of all THEN clauses in IF
statements were GOTO statements, with an additional one
quarter being assignment statements. The use of the GOTO,
assignment, and PRINT/WRITE statements accounted for 82%
of all THEN clause statements. Multiple levels of nesting of the
IF statement in the THEN clause accounted for about 6% of
the uses of the IF.

The use of the ELSE clause of the IF statement was
somewhat different from that of the THEN clause. Assignment
statements accounted for about a third of all ELSE clauses,
with the GOTO accounting for about another quarter, the
multi-level IF structures nested in the ELSE clause accounting
for about another fifth. The high percentage of nested IF
statements is probably due to the lack of a CASE-type con-
struct in the MBASIC language.

The 46% GOTO and 26% ASSIGN for THEN clauses com-
pared to 32% ASSIGN and 25% GOTO for the ELSE clauses
can probably be explained in terms of a lack of ability to
associate more than one statement with a THEN or ELSE
clause. Multi-statement THEN and ELSE clauses are simulated
by having a sequence of the form:

¢ IF B THEN GOTO ¢ +1i
2+1 S1-ELSE 'ELSE CLAUSE

2+i-1 GOTOR+; !BRANCHOUT OF IFTHENELSE
2+i S1-THEN 'THEN CLAUSE

Q+j 'END OF IFTHENELSE

Thus the ELSE clause which appeared 43% of the time that
the IF statement was used, is only used for single statement
clauses. This statement was most frequently an assignment
statement (32% of the time).

The modifier usage, given in Table 4, showed a rather
limited use of modifiers. The UNLESS modifier was infre-
quently used, with only six statement types making any use of
the modifier (approximately 50% of that usage was with the
GOSUB statement). The highest percentage of statements with
modifiers employed is the GOSUB statement, with about half
of the GOSUB statements using modifiers. Of these state-
ments, about 72% were WHERE modifiers. This is due to a
lack of a procedure mechanism that allows the passing of
parameters. This has been simulated with a statement of the
form:

GOSUB line WHERE PARM1 = vall, PARM2 =vaf2 . . .

For procedures that return values (functions), the passing of
the return value has been simulated with a statement of the
form:

RETURN WHERE ANSWER = val

This was done about 12% of the time the RETURN statement
was used.

The use of the FOR modifier is confined mostly to input/
output statements and the assignment statement, with 67% of
the FOR modifiers being used for the PRINT/WRITE and
INPUT statements, and 30% being used for initialization of
arrays in assignment statements. It is interesting to note thata’
GOTO statement was used with a FOR modifier three times
(although an explanation of this use cannot be given here).

The IF modifier had 93% of its usage confined to three
types of statements: 33% to branching statements (GOTO,
and GOSUB), 28% to assignment statements, and 32% to
input/output statements (PRINT/WRITE, and INPUT).

The use of the backslash, illustrated by Table 5, is confined
to only 5 statement types. Approximately 36% of the PRINT/
WRITE statements used a backslash. This accounted for 71%
of the backslash usage, with an additional 21% of the back-
slashes being used for assignment statements (to limit the
scope of modifiers).

Of the two pairs of synonymous keywords, PRINT/WRITE
and STOP/END, both showed heavy favorites. PRINT was
used about 84% of the time instead of WRITE, while END was
used 79% of the time instead of STOP.

IV. Conclusions

Depending on the type of information desired, there are
many different ways the data presented in Tables ! to 5 could
have been analyzed. Further efforts are needed to arrive at a
more comprehensive evaluation of the data,

Overall, the data suggests that the fancier or more complex
features of the MBASIC language are not being utilized exten-
sively. The statistics lend credence to the hypothesis that the
users of the MBASIC language are attempting to simulate some
of the elementary structured programming constructs such as
procedures with parameters, an IFTHENELSE statement with
multi-statement THEN and ELSE clauses, and a CASE
statement.

Users have attempted to introduce techniques for greater
abstraction and problem reduction by simulating procedures

105

with parameters, and using non-numeric GOSUB expressions.
Some 38% of all GOSUB line expressions have used meaning-
ful variable names to serve as procedure names (with the
variable initialized to the proper line number elsewhere).
These conclusions suggest that the MBASIC structured pro-
gramming extensions will eliminate much of the present use of
modifiers.

MBASIC users have not taken advantage of the ability to
use modifiers and backslashes as a general language feature;
rather, its use has been confined mainly to input/output state-
ments and assignment statements, places where other lan-
guages have allowed a similar capability. The exception to
this is the use of the WHERE modifier, but in that case it was
used to circumvent the lack of adequate abstraction mech-
anisms.

V. Future Work

This article has presented only a preliminary look at what
needs to be an ongoing effort. Only a limited static profile has
thus far been performed.

Future work should take place in three areas: a more
comprehensive static profile, the development of a dynamic
profile, and, at a later time, the integration of such informa-
tion into the design considerations attendant to the planned
MBASIC batch compiler.

The static profile of MBASIC programs can be enhanced in
many ways. A larger sample of user programs would certainly
contribute to more representative data. The automatic mea-
surement program should be expanded to analyze the use of
arbitrary IFTHENELSE nesting levels, the composition of

assignment statements and FOR-NEXT loops (as was done for
FORTRAN and ALGOL 60), and spacial characteristics of
programs. In addition, these statistics should also report on the
mean usage (with variances) of each of the language features in
individual programs.

A dynamic profile can be developed, which gives informa-
tion about frequency of execution of statements and the
distribution of the execution time over the program state-
ments. A more ambitious, and important, study would deter-
mine if users are taking advantage of the dynamic scope rules
of the MBASIC language. As the language presently exists only
in interpretive form, with incremental parsing, the inter-
statement relationships, such as the association between a
FOR statement and the corresponding NEXT statement, must
be determined on the basis of execution order rather than
textual order. An important question is whether MBASIC
language users are using this dynamic association rule. This has
important consequences for the development of an MBASIC
compiler, since it is intended that most MBASIC programs
shall function exactly the same in both interpretive and com-
piled modes.

A long range goal is to incorporate, at user option, such
dynamic and static profiles into the batch monitor, as part of
the user program development cycle. Static information
obtained during compile time, and dynamic information
obtained at run time can be used to direct program optimiza-
tion during the next compilation. Thus, the compiler effort
can be concentrated on those portions of the code which are
most important to program function. Conceptually, this infor-
mation could be used, via a feedback loop between the execu-
tion phase and compile phase of program development, to
have the program execution history direct a heuristic optimiza-
tion of the object code produced by the compiler.

References

1. Knuth, D. E., “An Empirical Study of FORTRAN Programs,” Software Practice
and Experience, Vol. 1, pp. 105-133, 1971.

2. Wichmann, B., Algol 60 Compilation and Assessment, Academic Press, N. Y., 1973.

3. MBASIC Fundamentals, Vol. 1, Feb. 1974 (JPL internal document).

4. Schwartz, R., Syntactic Description of the MBASIC Language, October 1976 (JPL

internal document).

106

Table 1. Top-level statement usage breakdown

Type % of total (actual No.) Type % of total (actual No.)
ASSIGN 28.2 (4209 STOP/END 0.5 (79
IF 13 (1944) LET 0.5 (74)
PRINT/WRITE 12.9 (1928) COPY 0.4 (57
GOSUB 8.2 (1227) ON 0.3 (43
GOTO 7.5 (1112) APPEND 0.2 (26)
INPUT 6.7 (999 PAUSE 0.2 (24)
RETURN 3.7 (553) REMOVE 0.2 (23)
FOR 3.5 (528) DATA 0.1 (21)
NEXT 3.5 (527) WIDTH 0.1 (8)
STRING 3.3 (496) READ 0.1 (8)
OPEN 1.9 (276) RENAME 0 (&)
CLOSE 1.9 (229 EXIT 0 (3)
DIM 1.5 (223) RNDMZ 0 (§3)]
REAL 0.7 (@aon EXCHANGE 0 0)
AT 0.7 (100) TAPE 0 0
WAIT 0.6 (84) REMARK 0 0

File count: 114
Statement count: 14,908

GOTO with constant line expression: 97% (1075)
GOSUB with constant line expression: 62% (756)

{ PRINT 10.8% (1613)
WRITE 2.1% (315
STOP 0.1% (17)
END 0.4% (62)

107

Table 2. THEN clause statement usage breakdown

Type % Total THEN clauses (actual No.) Type % Total THEN clauses (actual No.)
GOTO 45.8 (891) TAPE 0 (O
ASSIGN 25.8 (501) AT 0
PRINT/WRITE 16 (204) DATA 0 (0)
IF 6.2 (121) NEXT 0 (0)
RETURN 4.5 (87 APPEND 0 (0)
GOSUB 4 an OPEN 0 ()
INPUT 1.6 (3D REAL 0 (0)
END/STOP 0.7 (13) REMARK 0 (0)
FOR 0.5 (9 EXIT 0 (0)
COPY 0.3 (6) READ 0 ©®
ON 0.1 (2 STRING 0 (0)
REMOVE 0.1 (1) WIDTH 0
CLOSE 0.1 D EXCHANGE 0 (0)
LET 0o (O RNDMZ 0 (0)
PAUSE 0 (O DIM 0 (0)
RENAME 0 (@ WAIT 0 (0)

THEN Clause count: 1944

PRINT
WRITE

END
sTOP

7.8% (152)
2.7% (52)

0.6% (12)
0.1% (1)

108

Table 3. ELSE clause statement usage breakdown

Type % Total ELSE clause (actual No.) Type % Total ELSE clauses (actual No.)
ASSIGN 31.9 (265) PAUSE 0 (0)
GOTO 25.3 (210) RENAME 0 (0)
IF 21.4 (178) TAPE 0)
PRINT/WRITE 9 (75) AT 0 (0)
GOSUB 4 2n DATA 0 ()
INPUT 3.7 (31 NEXT 0 (0)
RETURN 3 (25) WAIT 0 (0)
ON 0.8 (N OPEN 0 (0)
COPY 0.8 (M) REAL 0 (0)
REMOVE 0.5 REMARK 0 (0
FOR 04 (3 EXIT 0 (0
CLOSE 0.2 (2 READ 0 (O
STOP/END 0.2 (2 STRING 0 (0)
APPEND 0.1 () WIDTH 0 (0
DIM 0 (0 EXCHANGE 0 (0
LET 0 (0 RNDMZ 0 (0
If statements with ELSE Clause: 43% (831)

PRINT 7.3% (61)

WRITE 1.7% (14)

STOP 0.1% (1)

END 0.1% (1)

109

Table 4. Modifier usage by statement type

Type % Using modifiers (actual No.) % Total WHERE % Total IF % Total UNLESS % Total FOR
GOSUB 51.2 (628) 72.5 13 13.5 9
WAIT 40.5 (34) 0 0 100 0
GOTO 32.3 (359) 12.4 86.5 3 .8
WRITE/PRINT 30.9 (596) 1.5 36.6 3.6 58.3
APPEND 30.8 (8) 0 25 62.5 12.5
WIDTH 25 (2) 0 100 0 0
INPUT 24.1 (241) 2.3 35.5 0 62.2
FOR 21.8 (115) 99.1 9 0 0
REMOVE 21.7 %) 0 80 0 20
READ 12.5 (1) 0 0 0 100
COPY 12.3 (7 0 71.4 0 28.6
RETURN 11.8 (6%) 66.2 33.8 0 0
ASSIGN 11.7 (493) 8.6 47.3 4.7 39.3
STRING 10.3 (51) 55.8 23.4 0 20.8
CLOSE 10 (23) 84 12 0 4
REAL 9.9 (10 58.3 41.7 0 0
STOP/END 8.9) 14.3 85.7 0 0
OPEN 8.3 (23) 0 48.3 0 51.17
PAUSE 42 (D 100 0 0 0
ON 2.3 (N 0 100 0 0
AT 2) 0 100 0 0
DIM 1.8 4) 0 100 0 0
NEXT ' .6 (3) 100 0 0 0
RNDMZ 0 (V] — - — -
TAPE 0 (0) - - - -
EXCHANGE 0 () - — - —
LET 0 (V) — - — -
RENAME 0 (D) — - - —

WRITE 50.5% 1.1% 47% 0% 51.9%
PRINT 271% 1.7% 31.9% 52% 61.1%
END 6.5% 0% 100% 0% 0%

STOP 17.6% 33.3% 66.7% 0% 0%

Table 5. Backslash usage by statement type

Type % Using backslash (actual No.) Type % Using backslash (actual No.)
PRINT/WRITE 35.9 (693) TAPE 0 (0)
STOP/END 89 (D) AT 0 (0)
ASSIGN 6.1 (256) CLOSE 0 (0)
INPUT 1.7 (17) DIM 0 (0)
GOSUB 2 () EXCHANGE 0 (0)
APPEND 0 (O GOTO 0 (0
COPY 0 (O LET 0 (0)
NEXT 0 (0 OPEN 0 (0)
PAUSE 0 (0 READ 0 (0)
REAL 0 (O RENAME 0 (0
RNDMZ 0 (O WIDTH 0 (0)
REMOVE 0 (O WAIT 0 (0)
STRING 0

PRINT 37% (597
WRITE 30.5% (96)
STOP 11.8% (2)
END 8.1% (%)

111

